
AO—A074 079 STAI ORO (RIIV CALIF DOT OF coeutn SCIENCE US IIfl
FAST A&SCRITSIS FOR SOLVINS PATH PROStENS. (U)
APR 79 N £ TA*JAN N000fl—75—C—OflS

UNCLAUZFIID ST*tI—CS—79—7M
OF

11
END

- - ~A t t
___ nilE

—

10:79

I.

‘ O L I~2.8 ~fl 2.5
I . L ~~~~~ ~~~~~

_ _

2.2
~~~~~~~3 o  =

2.0Il~~~ III~I~11111’ .25 
~

MICROCOPY RESOLUTION TEST CHART
NAIIONAL BUREAU Of STA NDAA DS - 19A3-A



r - -
~~~~ 

- -

~ J .

~~~~ .@~.

FAST ALGORITHMS FOR SOLVING PATH PROBLEMS

by

Robert Endre Tarjan ~

H ~~~~~~~~~~~~~~~ 919~~~~~~~

STAN-CS-79-734
April 1979

C O M P U T E R  S C I E N C E  D E P A R T M E N T
I ~~ School of Humanities and Sciences
I STANFORD UNIVERSITY
1. _i

~~~~~ d~~ci~~r.’ n t  
~~~~~~~~~~~ y edICT public ~ cmd sale; ii~I is unlimft~d.

I ~ .~A. 0
~~~~~~~~~~ -—~~~~~~~~~~~ - —.~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~T:



UNCLASSIFIED
SECURITY CLASS IFICATION OF THIS PAGE (I47~.n Dot. Ente red) 

___________________________________-

~~~~~~~~~~~ ~ n~~. i& t ~~~t-r i -r ir ~ j  D A r E  READ INSTRU CT IONSI~ Lr U1~ S I ’~~~¼.UMEI ~ I MI I’.”~ 1 I3EF ORE CO MPL ETING FORM
2. C.OVT ACCESSION NO. 3. RECIPIEpI V$ CATALOG NUMBER

\ M)STAN- CS -79-73l~ /
4 T I T L E (and Sub:itin~) 5. TyPE Op REP0R’r S PERIOD COVEflED

(1)Fast Algorithms for Solving Path P;ob1ems .~~~/ technical, Apri l 1979
~~~~~~~~~~ 6. PERFORMING ORG. REPORT NUMBER

__________________________________________________ STAN-CS _79_73!i.
7. A UTHOR(a) I. CONTRACT OR GRANT NUMBEP.(s~

Robert Endrejrari an (‘13 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘71)9. PERFORMING ORGAN IZATION NAM E AND ADDRESS ~IO~ J~IIOOflAM Et EM~~.. T. ~~~~~~~~~ ~~.I AREA & WORK UNIT NUMBERS‘ •o !nputer SCience Depa~t~~~~ ~stanford Univeraity
stanford, California 94305 

____________________________

II. CONTROLLING OFFICE N A M E  AND ADDRESS /~~\ 
t2~~ RMRQ~~~. ~~~~~~~~~~~~~ Office of Naval Research Apr~~~~~79Department of the Navy ‘.

~~ S~~~~NUlWEW OY PAEt~ 
-

Ar lington, Va 222 17
5 4  MONITORING AGENCY bl AME 6 AO DRESS(II diiler.nt from Controli iná Office) 15. SECURITY CLASS. (of thie report)

ONR Representative - Philip Surra
Durand Aeromautics Building, Room 165 UnclassIfied
Stanford Univers i ty IS•~ DE CLA SSIFICAT IO N~~DOWNGRADING
Stanford , Ca. 91+305 SCHEDULE

IS. D(STRIEIUTIOR STATEMENT (of tAle Report) — -—— 

H ~~~~~~~~~~~~ ~~~~Releasable withou t limitations on dissem ination. —

Ii. DIStRIBU~~IOM STATEMENT (of the ebatr.ct entered in Block 2O~ if differen t from R.po,t)

IT ’ A.,
i -~ 

~

II. SUPPL E M E N T A RY  NOTES

19. KEY WORDS (Continu. on ro r•ra. aid. If n.c.a.ary and identify by block numb.,)

Ackermann ’s function , code optimization, compiling, dominators , Gaussian
-
; elimination, global flow analysis, graph algorithm, linear algebra , path

compression, path expression , path problem , path sequence, reducible flow graph ,
regular expression, shortest path , sparse matrix.

20. A B STRACT (CønfInu. an ~.r ria aide linIc.aaaty and identify by block numb.,) 
-

\ (see reverse side)

/

DD 
~~~~~~~~ 

1473 EDITION OF ~ NOV 6S S S O6SOLET E
.

UNCLASSIFI ED
SECUFISTY CLASSIFICAT ION OF Till S PAGE (lbh.n flOf. ~nt ,.dJ

1 .. -

~~

- ~ -~ -- - ~~~~~~~~~~~~~~~~

S#’
~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -~~~~~~~~~~ - .—- -- -___


U N C L A S S I F I E D

S~~CU1I ITY C LA ~~ IF ICATIO N OF Ti l lS PAGE($~,on Dote Ente..,d)

Let G = (v ,E) be a directed graph with a distinguished source vertex s.
The single-source path expression problem is to find, for each vertex v,
a regular expression P(s,v) which represents the set of all paths in G
from s to v. A solution to this problem can be used to solve shortest
path problems , solve sparse systems of linear equati ons, and carry out
global flow analysis We describe a method to compute
path expressions by dividing G into components, computing path expressions

on the components by Gaussian elimination, and combining the solutions.

This. method requires Q(m~~(in,n)) time on a reducible flow graph, where

n is the number of vertices ‘irc G, m is the number of edges in G, and

o’ is a functional inverse of Ackerniann’s function . The method makes use
of an algorithm for evaluating functions defined on paths in trees [9, 29].

A simplified version of the algorithm, which runs in O(m log n) time on
reducible flow graphs , is quite easy to implement and efficient in practice.

~~~~~~~ ~~~) \__~ _— _\

•
~~~~~ . :~ ..

--
--

V

- —
--—- -

\~~~~ ~~~~~~~~~~
~~~~~~~~~~~~~~ 

.

\2~— ~
.

‘
~ ~~~~-~

- -
-

~~~~. :..~~

-
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Wh.n 2.1. Enf...d)

- —... —V _________,_ t - -
.-.

~

.

_ _ _ _

~~~~~~~- 

_ _ _ _  ~~~t 
-

~~~~


Fast Algorithms for Solving Path Problems

*1Robert Endre Tarjari-’

Computer Science Department
Stanford TJkdversity

Stanford, California 914305

Apr il, 1979

Abstract.

Let G = (v,E) be a directed graph with a distinguished source vertex s

The single-source path expression problem is to find, for each vertex v ,

a regular expression P(s,v) which represents the set of all paths in G

from s to v . A solution to this problem can be used to solve shortest

path problems, solve sparse systems of linear equations, and carry out

global flow analysis [30]. We describe a method to compute

path expressions by dividing G into components, computing path expressions

on the components by Gaussian elimination, and combining the solutions.

This method requires 0(m a(m,n)) time on a reducible flow graph, where

n is the number of vertices in G, m is the number of edges in G- , and

a is a functions.], inverse of Ackerrnann’s function. The method makes use

of an algorithm for evaluating functions defined on paths in trees [9,29].

A simplified version of the algorithm, which runs in 0(m log n) time on

reducible flow graphs, is quite easy to implement and efficient in practice.

CR Categories: 11 .12, 11.311., 5.111., 5.22, 5.25, 5.32.

Keywords: Ackermann’ s function, code optimization, compiling, daninators,
Gaussian elimination, global flow analysis, graph algorithm,
linear algebra, path compression, path expression, path problem,
path sequence, reducible flow graph, regular expression,
shortest path, sparse matrix.

This research was partially supported by the National Science Foundation
under grant MCS75-22870-A02, by the Office of Naval Research under
contracts NR01~l1.-l1.O2 and N0001Il.-76-C-06 the IBM Corporation, and
by a Guggenheim Fellowship. Reproduction in whole or in part is permitted
for any purpose of the Ukiited States government.

1.

~~~~~~~ 
.-

~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~W~~v ~~-- -~~~~~~~~--~~~~~~~ --_- - _ _


1. Introduction.

The techniques of Gaussian and Gauss-Jordan elimination, originally

devised to solve systems of equations over the real numbers, have been

repeatedly rediscovered and applied to other problems. These include shortest

path problems [6,10,16], path-finding problems [11.], global, flow analysis

[2,12,13,23], and conversion of finite automata to regular expressions [18].

The most fundwnenta]. of these problems is the (single source) ~~~~

expr ession problem: Given a graph G = (v,E) and a distinguished

source vertex s , find a regular expression P(s,v) for each vertex v

which represents all paths from S to v in G . By reinterpreting

the U , • and * operations used to construct regular expressions,

we can use a solution to the single-source path expression problem to

solve other kinds of path problems, including those mentioned above [30].

We thus obtain a general-purpose algorithm for solving any path problem

on a given graph.

This paper describes a decomposition method for computing path

expressions. The method divides the graph G into components based

upon the dominator tree of G , computes a path expression for each

component by Gaussian elimination, and combines the solutions using

an algorithm for evaluating functions defined on trees [9, 29] . The

algorithm requires O(m a(m,n)) time plus time to coarpute path expressions

within the components, where n is the number of vertices in G ,

m is the number of edges in G , and a is a functional inverse of

Ackermann ’s function. If G is a reducible flow graph, each component

of G is a single vertex, and the method requires O(m a(m,n)) time

2

-

total. Although the method is rather complicated, a simplified version,

which runs in 0(m log n) t~i.me, is quite easy to program and efficient

in practice.

The paper contains seven sections. Section 2 reviews the properties

of regular expressions used in the following sections. Section 3

reviews standard methods of numerical linear algebra and describes

their application to the path expression problem. This section introduces

the notion of a path sequence for a graph G and shows how, given a

path sequence, one can solve the single-source path expression problem

for any source in time proportional to the length of the path sequence.

Section ~ presents an 0(m a(m,n)) -time algorithm for solving a single-

source path problem on a reducible flow graph if the source is the start

vertex of the graph. Section 5 extends the algorithm so that it

computes path sequences for reducible flow graphs. Section 6 generalizes

the method to non-reducible graphs. Section 7 discusses applications

and suggests further research topics. The appendix contains the basic

graph-theoretic terminology used in the paper. An earlier and much

different version of this paper appeared as a Stanford technical report [27].

3

- V -
~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~
- -— - ---- -

~~~~-:



2. Regular Expressions and. Path Expressions.

Let E be a finite alphabet containing neither II A ” nor “0 ” .
A regular expression over E is any expression built by applying the

following rules.

(la) “A ” and “ 0”  are atomic regular expressions; for any a € E ,

“ a ” is an atomic regular expression.

(lb ) If R~, and R2 are regular expressions, then (R1uR2) ,

(R1
.R
2) , and (R1)

* are compound regular expressions.

In a regular expression, A denotes the empty string, 0 denotes

the empty set, u denotes set union, denotes concatenation, and

*1
* denotes reflexive, transitive closure under concatenation.-’ Thus

each regular expression R over E represents a set 0(R) of strings

over 
~ 

defined as follows:

(2a) 0(A) = [A) ; a(Ø) = ; 0(a) = [a) for a€ E . -

(2b) 0(R1UR2) = o(R~)U a(R2) = tw Iw€ cY (R1) or w€ a(R2) ) ;

a(R~,.R2) = a(R.~)’a(R2) = (w1w2 ~w1-€ a(R1) and w
2 e 0(R2

))

a(R*) = 

k=O 
a(R)1~ , where 0(R) 0 

= (A) and a(R)~ =

Note that each of the symbols A , 0 , U , • , * stands in the text both

for the symbol itself and for a string, set, or operation. We shall.

allow the context to resolve this ambiguity. Also, we shall freely

omit parentheses from regular expressions when the meaning is clear;

we assume the standard operator precedence: * over • over U

11

p’ _ _  
_ _



The reverse R1’ of a regular exprc~ssion R is defined by

r r r(3a) Ä = Á ; Ø = Ø ; a = a f o r a c E .

(3b ) (R1UR2)
r 

= R~~U R ~

=

* r(R1) = (R,,~)

Two regular expressions B
1 and R

2 
are equivalent if a(R ~ ) = c~ R2 )

A regular expression R is simple if R = 0 or R does not contain 0
as a subexpression. We can transform any regular expression B into an

equivalent simple regular expression by repeating the following

transformations until none is applicable: (i) replace any subexpression

of the form or ~~ by 0 ; (ii) re~~Lace any subexpression of

the form Ø ÷ R 1 
or R1+ Ø  by R1 ; (iii) replace any subexpression

of the form 0 by A .

A regular expression R is non-redundant if R represent s every

string in a(R) uniquely. We can make this definition precise as

follows:

(l~a) A , , and a for each a € E  are non-redundant.

(11b) Let B1 and R2 be non-redundant

B1UR2 
is non-redundant if a ( B1 ) n o ( R~

) = 0 .
R1.R 2 is non-redundant if each w€a (R

1
.R
2) is uniquely

decomposable into w = w
1
w2 with w

1 £ 0( R1) and

V2 €

S

- —,. .—-—— - .-. .- - 
~~~

,— ..‘.- ..

_ _ _ _ _ _ _ _ _ _ _ _ _

is non-redundant if each w~ c(R
*) is uniquely decomposable

into w = w1w2. . . Wk
with w . € 0(R

1
) for 1 < I < k

Not e that if R* is non-redundant, A~~0(R)

Let G = (v,E) be a directed graph. Any path in G is a sequence

of edges, which we can regard as a string over E • A path expression P

of type (v,w) is a simple regular expression over E such that every

string in o(P) is a path from v to w . Every subexpression of a

path expression is a path expression, whose type can be determined as

follows.

(5) Let P be a path expression of type (v,w)

If ~ = , then P
1

and P2 are path expressions of

type (v,w)

If ~~ = , then there must be a unique vertex u such

that P1 is a path expression of type (v,u) and P2
is a path expression of type (u,w)

If P = P , then v = w and P1 is a path expression of

type (v,w) = (v,v) .

It is easy to verify (11) using the fact that P is simple. Note that

A is a path expression of type (v,v) for any v •

In describing algorithms to compute path expressions we shall assume

that each U , • , and * operation requires constant time. If we

represent the computed path expressions by a directed acydlic graph as

described by Aho and U].lman [2, pp. 11.18-1126], this is a reasonable

assumption.

6

~~~ .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~

-- -- --

~~~~~~


3 . Path Expression Problems and Path Sequences.

Let G = (v, E) be a directed graph. The single-source path

expression problem for source vertex s is the problem of computing,

for each vertex v € V , a non-redundant path expression P(s ,v) such

that a(P(s,v)) contains all. paths from s to v . The single-sink

path expression problem for sink vertex t is the problem of computing,

for each vertex v €V , a non-redundant path expression P(v,t) such

that o(P(v,t)) contains all, paths from v to t . The all-pairs

path expression problem is the problem of computing, for all pairs v,w€ V ,

a non-redundant path expression P(v,w) such that ~(P(v,w)) contains

a.Upaths from v to w .

In this paper we develop a way to solve path expression problems by

using Gaussian elimination in combination with methods for decomposing

G into components. In this section we describe how Gaussian elimination

applies to such problems. We also describe a well-known decomposition

method which uses the strong components of G • In subsequent sections

we present a more powerful decomposition method based upon the

dominator tree of G

Gaussian elimination was originally developed to solve a system of

linear equations Ax = b , where A is an nxn matrix of real-valued

coefficients, x is an n~~l vector of variables, and b is an nxl

vector of real-valued constants [U] . The method consists of two steps.

Step 1 (LU decomposition) . Decompose A int o A = LU , where L is

unit lower triangular and U is upper triangular.

Step 2 (Front solving and backsolving). Solve the triangular systems

Ly = b (frontsolving) and Ux = y (backsolving) .

7

~~~1 -~~~ W~Wi~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ *ll ~~~~~~~~~~ “i~~~~~~~~%~i”w ~
— — .

~~~ ~~~ jw • -~~—-‘--——~~~~. - — - -  _.~~~..


/

The resource requirements of Step 1 dominate those of Step 2 and

thus determin~.- the overall requirements of the algorithm [5, 28]. The

method has several pleasant features, including its amenability to an

implementation that takes advantage of the spars ity of A , avoiding

arithmetic on numbers known to be zero [8,22]. It is also possible

to solve Ax = b for multiple right-hand sides by carrying out Step 1

once and repeating Step 2 for each value of b

We apply this method to path expression problems by introducing the

notion of a path sequence, which generalizes Kennedy’s node listing

concept [17]. A path sequence for a directed graph G is a sequence

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ such that

(6a) For 1 < i < £ , P~ is a non-redundant path expression of

type (v.,w.)

(6b ) For 1 < i < 2 , if v. = w . then A €

(6c ) For any non-empty path p in G, there is a unique sequence

of indices 1 
~ 

< ‘2 < < ‘k < ~ 
and a unique partition

of p into non-empty paths 
~ = 

~1’~ 2’ ’~ k 
such that

Pj  € c1(P
~ 

) for 1 k
3

Given a path sequence, we can solve the single-source path expression

problem for any source s by using the following propagation algorithm:

We shall use a synt ax resembling Dijkstra ’s [7] for expressing
algorithms

8

~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -
~~~~~~~~~~~~~~~~~~~ - -——‘~~~ - - - -- --- -~~~~~~~~~~~~~~


procedure SOLVE ;

begin

initialize : P(s , s) := A; for each v€V-[s} do P(s,v) := 0 od—t.

for i := 1 until 2 do
• —~ — r_~

L if v~ = w~, — P(s,v
~
) := 1PCs,v

~
).P

~
J

Q v~, ~
w~,

_.P(s,w~) := [P(s,w
~
)u [P(s,v

~
).P

1]] fi od

end SOLVE ;

In this and subsequent algorithms, the square brackets denote the

following simplification procedure. This procedure, when applied

recursively, produces regular expressions that are not only simple but also

*
contain no subexpressions of the form A.B

1 , R1•A , or A

regular expression procedure [B] ;
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

if B = B 1 U R2 
-. if R

1 = 0 -. B2 ~ R2 = 0 - R1 fi

El R =  R1.R2 ~~if (R1 = 0) or (B2 = 0) - 0  ~ R1 = 1~~— .B2 f l R2 = A -.R1 fl

U R = B  -4 1f (R1 =Ø ) or (R1 =A )  — A fi~~~

Lemma 1. Let (P1,v1,w1) , ( P2,v2,w2 ) , . . ., ( P1,v1,w1) be a path sequence

for G and let v be any vertex. After i iterations of the loop in

SOLVE, P(s ,v) is a non-redundant path expression representing ~xact1y A

(if s = v ) and all non-empty paths p from s to v for which there

is a sequence of indices 1< i1 < i2 < < < i and a partition of

p into ~ = p1,p2, • 
~‘~ k 

such that € o(~~~, ) for 1 ~ J ~ k
3

Proof. Straightforward by induction on i .

9

- —..~~~~~ —... -• .,-.-•~ ~~~~~~~ 
— —•__ ..4.~~~. •, -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Theorem 1. Let (P1,v1,w1), (P2,v2,w2), ..., (P1,v1,w 1) be a path sequence

for G and let v be any vertex. After execution of SOLVE, P(s,v) is

a non-redundant path expression representing all paths from s to v

SOLVE is a generalization of the frontsolving-backsolving step in

Gaussian elimination; its running time is O(n+2) . To solve a single-

source path expression problem on a graph G , we construct a path

sequence and apply SOLVE once . To solve an all-pairs path expression

problem, we construct a path sequence and. apply SOLVE n times, once

for each possible source. To solve a single-sink path expression problem,

we employ the following theorem to construct a path sequence for Gr ,

and then we solve the corresponding single-source problem on Gr

Theorem 2. Let (p1,v1,w1),(P2,v2,w2),...,(P1,
v1,

w
1)

be a path sequence

for a graph G • Then (P~,w1,v1) , . .. , (P~,w2,v2) ,(P~,w1,v1) is a path

sequence for G”

Proof. Immediate. ~

By Theorem 2 it is no harder to compute a path sequence for Gr than

to compute a path sequence for G

We can construct a path sequence for an arbitrary graph by using a

method analogous to Step 1 of Gaussian elimination. The method is similar

to KLeene’s algorithm for converting a finite automaton into a regular

expression [18], except that Kleene uses Gauss-Jordan elimination. Let

G = (V,E) be a directed graph whose vertices are numbered from 1 to n

and identified by number. The following procedure computes a set of path

expressions which when properly ordered gives a path sequence.

10

-
~~~~~~~~

4 W
~~~~

d WJv
~~~

-— —~~~~~~~~~~~~ --



V

~~~~~~~~~~~~~ ELI1~tENA!rE;

initialize: for v := 1 until n do for w := 1 until n do P(v,w) := 0 od od;
1w — 1w _

for eac~i e € E d o P(h(e) , t (e)) := [p (h(e) , t (e)) U e] od;

loop : for v := 1 until n do
WIw 1w

P(v,v) := [P(v ,v) *];

for each u > v such that P(u,v)
~ 0 do

— — 1w

p(u,v) := [P(u,v) .P(v,v)] ;

for each w > v such that P(v,w)
~ 0 do

— 1w

P(u,w) := [P(u ,w) u {P(u,v) .P(v,w)] J od od

end ELIMINATE;

Lemma 2. After the v -th iteration of the loop in ELIMINATE, the following

statements are true.

(i) P(u,w) for u w and w < v is a non-redundant path expression

representing exactly the paths from u to w which contain no

intermediate vertex larger than w

(ii) p(u,w) for u < w or w > v is a non-redundant path expression

representing exactly the non-empty paths from u to w all of

whose intermediate vertices are smaller than min[u,v+l)

Proof . Straightforward by induction on v • 0

_ _ _

U

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ~~~~~~~~~~~~~~~~~~~ — 

- ~~~~ 
.

~~~~~~~

-

~~~
+

~~~~~~~
--

~~~~~~~~~~~~~~~~~ ‘~~ ‘~T~~ TT~~



Theorem 3. After execution of EI~ThUNATE the following statements are

true.

(1) P(u,w) for u w is a non-redundant path expression representing

exactly the paths from u to w which contain no intermediate

vert ex larger than w

(ii ) P(u,w) for u < w is a non-redundant path expression representing

exactly the paths from u to w all. of whose intermediate vertices

are smaller thazi u . -

Theorem 11.. Let P(u,w) for u,w € V  be the path expressions computed

by ELIMINATE. Then the following sequence is a path sequence : the

elements of [(p(u,w),u,w) P(u,w) ~ tØ, A~ 
and u < w) in increasing order

on u , followed by the elements of [(P(u,w),u,w) P(u,w) 
~ P and u > w)

in decreasing order on u

Proof. The sequence specified in the theorem certainly satisfies (6a)

and (6b). To prove (6c), let p be any non-empty path in G . Let V0

be the mamimum vertex on p • Let p0 be the part of p from the first

occurrence of v0 to the last occurrence of v0 (if V
0 

only occurs once,

p0 = A ). For i 
~~ 
1 , let v~ be the largest vertex occurring on p

after the last occurrence of v~~1 , and let p. be the part of p

from the last occurrence of vi_l to the last occurrence of

Let v1 be the last such v~ defined (v 2 = t(p)) • For i > 1 ,

let be the largest Vertex occurr!ng on p before the first

occurence of v_i+i Let p 21,,,1 be the part of p from the last

occurrence of V_i before 
~-2i+2 

to the beginning of 
~~2i+2 ‘

and let be the part of p from the first occurrence of V_i

12

.—‘ 
______ 

— ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - - - — —-



to the beginning of p 2~,,,,1 . Let V_k be the last

such v~~ defined (v k = h(p ))  • Then

p 
~-2k’~~-2k+l’ . .,p 1,p0,p1, .. .,p 2 with p 2~ € a(P(v 1, v 1) )  for

0 <  1 < k 
~ ~-2i+1~ 

a(P (v 1,v 1~1))  for 1 < i < k , and

€ a(P(vj i ,v~
))  for 1 < i < I . Ignoring empty paths p. , we get

a partition of p which sati sfies (6b). It is straightforward but

tedious to show that this partition is unique. 0

ELIMINATE thus gives us a way to construct path sequences. The resource

requirements of the method depend in a complicated way upon the sparsity

of G . B~ rearranging the computation in the loop of ELIMINATE and.

using appropx~.ate data structures we can implement ELIMINATE to run in

+ 

v~~1 
[P(u,v) 

~ PIu>v3I .I (P(v,w) ~ ~~~
w >v)

t) 
time and 0(i)

storage space, where £ is the length of the computed path sequence

[5, 28]. (By only storing P(u,w) for pairs u , w such that eventually

P(u,w) 
~ , we can avoid spending 0(n2 ) time in initialization.)

For dense graphs the time bound is O(n3 
+ m) and the space bound.

is 0(n2 ) . For sparse graphs, the resource requirements depend upon

the vertex numbering chosen. Numerical analysts have devoted much

effort to finding good numbering schemes, both for arbitrary sparse

graphs and for graphs with special structure (5, 8,22,28].

AU their techniques except off-diagonal pivoting [11] apply to the

computation of path sequences

In order to improve the efficiency of this method, we shall combine

it with two decomposition techniques. The idea is to break the problem

13

- - . ~~~ - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~—-—‘-~~~~~
----



graph into subgraphs, apply ELIMINATE to construct a path sequence

for each subgraph, and combine these path sequences into a

path sequence for the original graph. t~Yur first decomposition technique

is well-known to numerical analysts and uses the strong components of G .

Theorem 5. Suppose G = (v,E) is acyclic (i.e., eanh strong component

is a single vertex) and that the vertices of G are numbered in topological

order. Then the elements of [(e ,h( e), t ( e ))  e € EJ in increasing order

on h(e) comprise a path sequence.

Proof. Inmied.iate. 0

By Theorem 5, any acyclic graph has a path sequence of length m ,

which can be found in 0(n+m) time using a linear-time topological

sorting procedure [19,25].

Theorem 6. Suppose G = (V,E) is a directed graph with strong

components G1,G2)...~ G~ , ordered so that no edge leads from a component

G1 to a component G~ with j  < i • For 1 < i < k , let be a

path sequence for G1 , and let Y1 be a sequence consisting of the

elements of [(e,h(e),t(e)) h(e) € G
~ 
and t(e) ~ G~) ordered arbitrarily.

(Note that is empty.) Then X1, Y1, X2, Y2, . . . , ~~~~ ~k-l’ 
Xk is a

path sequence for G

Proof. Immediate. 0

Theorem 6 generalizes the method of Theorem 5 to arbitrary directed

graphs. We can find the strong components of a directed graph in O(n+m)

time using the algorithm of Tarjan [21~]. Thus Theorem 6 gives a method

l1~



for finding a path sequence in 0(n+m) time plus the time to find

path sequences for the strong components. The length of the sequence

is 0(m) plus the total length of the strong components’ sequences.

15

—~~~~ — ~~.jr. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~ 

á~~~~~~~~• -

ii. Computing Path Expressions for Reducible Flow Graphs.

Although decomposition using strong components is efficient and.

useful in practice, many problem graphs have one or only a few strong

components. In the remaining sections of this paper we develop a more

powerful decomposition technique based -upon dominators. We begin by

considering reducible flow graphs. A flow graph G = (V,E,r) is a

directed graph with a distinguished start vertex r such that every

vertex in G is reachable from r . By Theorem 6 we need only consider

strongly connected graphs, so this reachability condition is no restriction.

A reducible flow graph G = (V,E,r) is a flow graph that can be

reduced to the graph consisting of the single vertex r and no edges

by means of the following transformations:

T1 (remove a loop): If e is an edge such that h(e) = t(e) , delete

edge e .

T2
(remove a vertex): If w r is a vertex such that all, edges e

with t(e) = w have h(e) = v for some vertex v , contract w

into v by deleting w and all edges entering w , and converting

any edge e with h(e) = w into an edge e’ with h(e’) = v
and t(e ’) = t(e)

This definition is due to Hecht and Ullman [1k]; there are many other

equivalent definitions of reducible flow gr aphs [12, l1~, 15,26]. Intuitively

a flow graph is reducible if every cycle has a single entry from the

start vertex. These graphs play an important role in global flow analysis,

because the control flow~ of a reasonably well-structured program can be

modelled by a reducible flow graph (3,20].

16

~~~~ 
-

~~
-
~~~~~~~~

-
,

-
~ ~~~~~~~~~~~~~~~~~~ - - —~~~~~~~~

- -

I
As the reduction by Ti and T2 takes place, each vertex in the

reduced graph represents a subgraph of the original graph, called a

region, and each edge in the reduced graph represents an edge in the

original graph. We define thi s notion formally as follows.

(7a) Each vertex and edge in the original graph represents itself.

(7b) If T1 is applied to delete an edge e , then vertex h(e) = t (e)

in the reduced graph represents the union of what h(e) and e

represent.

(7c) If T
2

is applied to contract vertex w into vertex v , then

v in the reduced graph represents the union of what v , w ,

and. all the deleted edges e with h(e) = v , t(e) = w

represent. Any new edge e’ represents what the corresponding

old edge e represents.

It is not hard to show that each region is indeed a subgraph of G

and that the regions corresponding to the vertices of any reduced graph

are vertex-disjoint (31]. Furthermore every region I has a unique

header vertex v such that any edge e with h(e) ~ I , t(e) € I has

t(e) = v [31]. The header is the unique vertex in the region which has

not yet been contracted. into another vertex. When the reduction is

complete, r represents a region comprising the entire graph G

If a flow graph is reducible, there is a reduction order ~~~~~~~~~~~~~~~~~~

of the vertices such that the graph can be reduced to r in the following

way [26]: For i from 1 to n-i , we apply T1 to delete all loops

at V
1
; then we apply T

2
to contract v~, into another vertex Vj with

17

- *

_ _ _ _ __ __ _ _

j > i . After deleting all vertices except v~ = r , we apply T1 to

delete all loops at r . This way of carrying out the reduction has the

following property. If we regard. the repeated application of T1 at a

vertex v~ followed by the application of T2 to delete v~ as a single

step, then between any two steps the entry vertex of any region has no

edges entering it from within the region.

We shall assume henceforth that the vertices of G are numbered

from 1 to n in a reduction order and identified by number. We shall

also assume that header(v) for v r is the vertex into which v is

eventually contracted, that cycle(v) for any vertex v is the set of

edges in G represented by edges deleted when applying T
1 to delete loops

at v , and that noncycle(v) for v r is the set of edges in G

represented by edges deleted when applying T2 to delete v . The following

lemma states some basic properties of header , cycle , and noncycle.

Lemma 3. Suppose G is a reducible flow graph whose vertices are

numbered in a reduction order. Let v be any vertex and let e be

any edge. Then

(i) if v r , header(v) > v

(ii) either h(e) = header(t(e)) or h(e) < t (e)

(iii) if e € cycle(t(e)) then head,er1(h(e)) = t(e) for some I ? 0 ; and

(iv) if e€noncycle(t(e)) then header1(h(e)) ~ tt e) for all i
~
0

but header1(h(e)) = header(t(e)) for some I
~
0

proof. Straightforward. 0

18

~~~~~~~~~~~ ~~~~~~Th Ii______



The algorithm of Tarj an (26] computes a reduction order and.

associated arrays header , cycle , and noncycle in 0(m a(m,n ) )

time. Using this information we can solve the single-source path

expression problem whose source vertex is r . The algorithm

resembles the methods of Uliman [31] and Graham and Wegran [~~~] for

solving “forward” data flow problems; we discuss this resemblance at

the end of the section .

The algorithm computes path expressions as the reduction proceeds,

using a data structure representing the current regions. The data

structure consists of a forest whose vertices are the vertices of G

and whose edges are the pairs (header(v),v) such that v has been

contracted into header(v) . Thus this header forest consists of one

tree per region; the tree representing a region contains exactly the

vertices in the region and has the header of the region as its root.

With every vertex v in the forest is associated a non-redundant path

expression R(v) . The algorithm manipulates the forest by means of

four operations:

TNITIALIZ~(v): Form a tree with one vertex v and associated path

expression R(v) := A

UPDATE(v,R ) : If V is a root, assign R( v) := R

LINK(v,w) :  If v and. w are root s, combine the trees with

root s v and w by making v the parent of w

EVAL(v): If r = v0 
-. v

1 
-. v

2 
-. ... -. Vk = v is the tree

path from the root r of the tree containing v

to v , return a non-redundant path expression

equivalent to R(v0) . R(v1) . ... . R(vk)
19

-~~*._.~_•w~~t i - .. ~, - :  ~- - ‘ - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
-

~~~~~~~~~
- -_ _ _ _



The algorithm maintains the following invariant: If I is a region and

v is a vertex in I , then EVAL(v) represents exactly all paths in I

from the header of I to v

procedure REDUCE;

begin

initialize: for each v€V do INITIALIZE(v) od.;

loop : for v := 1 until n-l do— —
P:=~~; Q : = Ø;

for each e€noncycle(v) doP := [pU[EVAL(h(e)).eII od;

for each e€cycle(v) doQ := [QU[EVAL(h(e)).eI] od;

- . 
UPDATE(v,[P•[Q ]]);

LINK(header(v), v) od;

finalize: P(r,r) := %);

for each e€cycle(r) do P(r,r) := [P(r ,r ) U [E V A L ( h ( e ) ) . e) ]  od.;

P(r,r) := [P(r,r)
*];

for v := l until n-l do P(r,v) := [P(r,r).EVAL(v)] od

end REDUCE;

Lemma i. After the v-th iteration of the loop in REDUCE, EVAL(u)

for any vertex u represents exactly all paths in the current region I

containing u from the header of I to u

Proof. By induction on v . The lemma is certainly true before the

first iteration of the loop. Suppose the lemna is true before the v-th

iteration of the loop. Let I~ be the current region containing v and.

20

,- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

let 1
3

be the current region containing head.er(v) . Let 12 be the

region containing v after T
1 is applied to eliminate all loops at v

Let I~ be the region containing v after T
2

is applied to contract

v into header(v) ; i.e., after the v-th iteration of the loop .

12
consists of I

~
and the edges in cycle(v) . consists of

12 , 1
3 ~ and. the ed€es In noncycle (v) ; the header of I~ is the

header of I

Il contains no edges entering v • It follows from the induction

hypothesis that the value of Q after the v-th iteration is a non-redundant

path expression representing all paths from v to v in 1
2 which do not

contain v as an intermediate vertex. Thus represents all paths in

12
from v to V • It also follows from the induction hypothesis that

the value of P after the v-th iteration is a non-redundant path expression

representing all, paths in I~ from the header of ~~ to V which do not

contain v as an intermediate vertex.

If u is a vertex in 1
5 ~ then the paths in I~ from the header

of I~ to u are exactly the paths in I~ from the header of I~

to u . If u is a vertex in 12 , the paths in I~ from the header

of 114
to u are exactly the paths p partitionable into

= p1,p2,p3
, where p

1
€ o(p) , € a(Q *) , and p

5
is a path in

from the header of I~, to u . Thus adding edge (hea.der(v),v)

to the forest and replacing the old. va,lue (i~) of P(v) by [p [Q*]]

guarantees that the lemma holds after the v-th iteration of the loop . 0

21

-

- -
~~~ ~~~~~~~~~~ ~~ 

- ——
~~~~~~

— -

Corollary 1. After execution of REDUCE, R(v) for any vertex v r

is a non-redundant path expression representing exactly the set of

paths from header(v) to v all of whose intermediate vertices are

smaller than header(v) .

Proof. For any vertex v r , let 114 be the region containing v

after the v-th iteration of the loop in REDUCE. Let R(v) be the path

expression computed for v during this iteration. By Lemma 14,

R(v) is a non-redundant path expression representing all paths in

I~ from header (v) to v . Any path in G from header(v) to v

which leaves I~ must contain header (v) twice, since the only way

to enter 114 is through header(v) . 0

Theorem 7. Let v any vertex. After execution of REDUCE, P(r,v)

is a non-redundant path expression representing all paths from r to v

Proof. Lemma 14 holds after the last iteration of the loop in REDUCE.

A proof similar to that of Lemma 14 shows that P(r,r) as computed in

the final part of REDUCE is a non-redundant path expression representing

all paths from r to r in G • It follows from Lemma 14 that the

computed value of P(r,r) for v r is a non-redundant path expression

representing all paths from r to v in G . 0

Procedure REDUCE requires 0(n+m) time plus time for n calls

on INITIALIZE, n-l calls on UPDATE, n—l calls on LINK, and m+n-l

cafls on EVAL; thus the forest manipulation operations dominate the

running time or the algorithm. Tarjan (29] describes two ways to

implement the forest operations. The first is a simple method

22

~~
_ _ _ _ _ _

called path compression which requires 0(m log n) time. The second

is a sophisticated off-line method which by preprocessing the entire

sequence of EVAL and LINK operations is able to perform all the forest

manipulation in 0(m a(m,n)) time. (It easy to precompute the

L sequence of EVAL and LINK operations performed by REDUCE.) Farrow [9]

presents another 0(m a(m,n)) -time method called stratified path

compression. This method has the advantage of being on-line, although

the proof of its time bound is very complicated.

By using either of the 0(m a(m,n)) -time algorithms for forest

manipulation we obtain a moderately complicated 0(m a(m,n)) -time

implementation of REDUCE. By using path compression we obtain an

0(m log n) -time implementation of REDUC E which is remarkably simple

and. efficient. We favor the latter implementation for practical

applications.

Ullman’s algorithm for forward dat a flow analysis ~~ij is essent ially

identical to REDUCE except that it uses 2-3 trees to carry out the forest

operations. Its time bound is O(m log n) but it is more complicated

than our method using path compression. Graham and We~ nan’s algorithm [12]

is a version of REDUCE which uses no auxiliary data structure but carries

out a form of path compression on the original graph. Its time bound

is 0(m log n) but it also is more coinylicated than our method using

path compression. Experimental comparisons between these methods would

be valuable.

23

—
~~~~~~~~~~~~~~ ~Ø W  - — 

~~~~~~~~~ 

—

—I-- —

-

-

V

5. Computing Path Sequences for Reducible Flow Graphs.

Some kinds of data flow analysis, such as the computation of live

variables [17], require that information be propagated backward rather

than forward through the control flow graph of the program. We can

carry out such backward dat a flow analysis by solving a single-source

path problem on the reverse of the control flow graph. Since reducibility

is not preserved by graph reversal, the algorithm of Section 5 is

inadequate for this purpose. In this section, we shall modify REDUCE

so that it computes a path sequence for any reducible flow graph. By

using such a path sequence and applying Theorem 6 if necessary, we can

solve single- and multi-source path problems on any flow graph which is

reducible or whose reverse is reducible. This provides an efficient way

to do backward data flow analysis.

In order to develop this algorithm, we need to examine the implementation

of the header forest operations. We shall describe a generic implementation

of which path compression [29] and stratified path compression [9]

are special cases. We shall use this generic implementation in an

extension of REDUCE which computes path sequences.

The generic implementation uses a compressed forest to represent the

header forest . With each vertex v~ of the compressed forest is

associated a path expression S(v) . The method maintains the following

invari ants.

(8a) For each tree T in the header forest, there is a corresponding

tree TC of the compressed forest which contains the same

verticeo as T .

214

- - ~~

~~~~~~~~~~~~~~~~



V

(8b ) If v w in a tree Tc of the compressed forest, then

v -~ w in T • In particular, corresponding trees T and T

have the same root .

(8c) For any vertex v , let r = V
0 

-. V
1 

-~~ ... -4 vk = v be the

path in the header forest from a root to v , and let

r = w0 w1 ... -. w1 = v be the path in the compressed

forest from a root to v . Then R(v0) . R(v1) ... . R(vk)
and S(w0) S(w1) ... • S(w

1) 
are equivalent non-redundant

path expressions.

The compressed forest is represented by an array ancestor such

that ancestor(v) is the parent of v in the compressed forest; if

ancestor(v) = 0 then v is a root. The following procedures implement

the forest operations.

~~~~~~~~ INITIALIZE(v);

begin ancestor(v) := 0; 3(v) :~ A end;

~~~~~~~~ UPDATE(v,R);

S(v) := H;

~~~~~~~~~~ LINK(v ,w) ;

ancestor(w) :=

25

___________ — —fl - .‘ •,._ _ ____‘_ _____ — —
~~~~

—
~~~~

—-—-—. —i- - -
,. - -

- .

.‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - 
-..~-~~-~.v-’v---—----- ~~ 

- — - i____i — -

~~~

- -

regular expression procedure EVAL(v);

non-deterministically execute COMFRESS(u) for an

arbitrary sequence of vertices u;
L

let v0,v1, . . .,vk be such that v = “k’ ancestor(v~
) = v11 for

for 1 < i < k, and ancestor(v0) = 0;

EVAL := ifk= 0-.A

U k ~ 0 3(v1) • 3(v2) s(v~) £~..
end EV.AL;

CaVIPRESS (u);

if ancestor(ancestor(u)) ~ 0 -.

S(u) := S(ancestor(u)) .

ancestor(u) := ancestor(ancestor(u)) fi;

it is evident that COIvIPRESS preserves (8a)-(8c); thus the procedures

above are a valid implementation of the header forest operations. The

following lemma is easy to prove using the results in Section 14.

Leimna 5. I~ v is any vertex such that ancestor (v) ~ 0 , then 3(v)

is a non-redundant path expression representing exactly the set of paths

from ancestor(v) to v all of whose intermediate vertices are smaller

than ancestor(v)

EVAL is a non-deterministic procedure which is free to choose an

arbitrary sequence of vertices u on which to execute COMPRESS(u) .

We obtain a specific implementation by including a mechanism for making

this choice. Path compression uses the following version of EVAL.

26


~~~~~~~ i2~ procedure EVAL(v);

if ancestor (v) = 0 EVAL := A

U ancestor(v) ~ 0 -. PATH COMPRESS(v) ; EVAL := 3(v) fi;

PATH COMPRESS (v);
L

if ancestor(ancestor(v)) ~ 0 -.

PATH COMPRESS(ancestor(v));

S(v) := S(ancestor(v)) • 3(v) ;

ancestor(v) := ancestor ( ances-tor (v)) fi;

Stratified path compression uses a more complicated compression mechanism

which requires the maintenance of additional data structures [9].

The following version of REDUCE uses the generic implementation of

the header forest operations to compute a path sequence. Procedures

EVAL and COMPRESS are modified so that they add elements to the path

sequence as a side effect.

27 

- - - - -—— -—~ —.—— ---—---——--— .—- - - — -  - .

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


REDUCE AND SEQUENCE;

initialize: for each v€V do INITIALIZE(V) od;
-~~~ — _-J F—

sequence := the empty sequence;

for v := 1 until n-i do

P := 0; Q. :=
for each e € noncycle(v) do P := [P U EVAL AND SEQUENCE(e)] od;__

- -

for each e € cycle (v) do Q : = EQ U EVAL AND SEQUENCE (e)J od.;
— W~~~~ -~

- - 1W

add l: if [Q*]
~~ A -. add ([Q*],v,v) to sequence fi;

UPDATE(v, [p [Q*]]);

LINK(header(v), v) od;

finalize: Q :=

for each e € cycle(r) do Q := [Q, U EVAL_AND_SEQUENCE(e)] od;

add 2: jf [Q*]
~~ A -. add ([Q*j r, r) to sequence f I;

for v := n-i by -l until 1 do add (S(v),ancestor(v),v) to sequence od— — —~
1W

end REDUCE AND SEQUENCE;
~~ 1W

~~~~ ~~~~~~~~~~ procedure EVAL_AND SEVENCE (e);

non-deterministically execute COMPRESS AND SEQUENCE(U) for

an arbitrary sequence of vertices U;

let v0,v1, . . .,v~ be such that h(e) = Vk~ 
ancestor(v1) = v1,,1 for

1 < i < k, and ancestor(v0) = 0;

if k = 0 -. EVAL AND SEQUENCE := e

k ~ 0 -. EVAL AND SEQUENCE := S(vk)e;

for I := k-i by -l until 1 do
1W — 1W

add (EVAL_AND_SEQUENCE,vi,t(e)) to sequence;

EVAL_AND_SEQUENCE := S(vi
). EVAL_AND SEQUENCE od. fi

end EVAL AND_SEQUENCE;
2B

-. -~~-—~~~~~~~~ . -



procedure COMPRESs_AND_SEQUENCE (u) ;

if ancestor(ancestor(u)) ~ 0

add (S(u),ancestor(u),u) to sequence;

S(u) := S(ancestor(u)).S(u);

- ancestor(u) := ancestor(ancestor(u)) fi;

Theorem 8. The sequence computed by REDUC E AND SEQUENCE is a path

sequence for G

Proof. The proof is similar to the proof of Theorem 14 but a little more

complicated. We shall ass~mie for purposes of the proof that statement

add l always adds ([Q*], v,v) to sequence , whether or not [q*] = A

similarly for statement add 2. This modification does not affect the

properties of sequence in which we are interested.

Lemma 5 and an inspection of REDUCE AND SEQUENCE show that the computed

sequenc e satisfies (6a) and (6b). To prove (6c), let p be an arbitrary

path in G . Let V
0 

= h(p) . For i 
~ 

1 , let v
~ 

be the first vertex

on p such that V. > v~~1 . Let vk be the last vertex so defined

(‘v~k is the largest vertex on p ). Let vk+l = t(p) . Let 
~2k be the

part of p rrom the first occurrence of vk to the last occurrence of Vk
Let 

~2k+1 be the part of p following 
~2k • For 0 < i < k-i , let

~2i-I-l be the part of p from the last occurrence of v. before 
~2 i+2

- to the beginning of 
~2i+2 

. Let p21 be the part of p from the first

occurrence of v~ to the beginning of 
~2i+1 

• Then p = p0,p1,...,p2~~1 ,

where 
~2i 

for 0 < i < k is a path from vi to v1 containing no

vertex greater than v~, , and for 0 < i < k is a path from v.

to v1~1 all of whose intermediate vertices are less than v~,

29

- ~~~~~~~~~~~~~~~ —:- ~~~~~~~~~~~~ - -

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -~~~~ --- ---~~ _- -w ~~~~~~~~~’~~’~~ ~~~~~~~~~~~~~~~~~ - -- -


For 0 <1 < k , p21€ cr(Q*(vj)) , where Q(v~) for v1, ~ r

is the value of Q computed during the v~ -th iteration of the loop

in REDUCE AND_SEQUENCE, and Q(r) is the value of’ Q computed dur ing

the final part of REDUCE AND_ SEQUENCE. In order to represent p as

in (6c), it remains for us to (I) partition each path p2~,÷1 for

0 < I < k-l into a sequence of paths represented by triples appearing

in sequence between ([Q(v1)
*],vj,v~) and ([Q(v.+1)

*],v~÷1,v~+l) ,

and (ii) partition
~2~€+1

into a sequence of paths represented. by

triples appearing in sequence after ([Q(vk)
*],vk,

vk)

Consider any path
~2i+1 for 0 .(I (k-i . Let e1 be the last

edge on this path. Then t(e1) = v3,4,1 , and h(e1)
is a descendant

of v1 in the compressed tree just after t~e v1 -th iteration of’ the

loop in REDUCE_AND_SEQUENCE. We partition p2~~,1 into

=
~2i+l,0’~ 2i+1,l’ . ,p21~1, ~

as follows. Let i 0 and

1 = . Repeat the following step until it no longer applies.

General step. Suppose b(e~) is not a descendant of’ h(p~~~1) in

the compressed tree when edge e1 is processed by REDUCE.

Consider the moment when h(e
i
) becomes a non-descendant

of h(p~~,~1) .
This event must be caused by an execution

of COMPEESS(u) such that ancestor(u) = h(p~~~1)

Let
~2i+l,j be the part of from the beginning

to p
~~~1 

to the last occurrence of u . Partition

p
~~•~1 

Into 
~~~~~ ~2i+1,j’ ~~ and replace j

by j+l .

30

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~T T  T~E~


Consider a single execution of the general step. Path p
~~~1 

must

contain u since h(p~~~1) ~ u ~ h(e1
) in the header tree. Thus

p
~~~1 

can be partitioned as stated. Execution of COMPRESS(u) causes

(3(u), h(p~~~1) , u)
to be added to sequence ;

~2i+l,j
€ 0(3(u))

After execution of COMPRESS, h(e1) is a descendant of u = h(p~~~~~)

in the compressed tree.

Suppose the general step is executed I times. Let p
2~÷1,2 =

By the discussion above, there is a subsequence of triples

(P0,u0,
w
0), (Pi,~r

w1), ... , (P11,u11,w21) appearing in sequence after

([Q(v.)*],v.,v.) and before triples of the-form (P,u,v.~ 1) , and such that

p - - € P for 0 < j < z-1 • Furthermore h(e.) is a descendant
2i+l,~j

j — 3.

of h(p .) in the compressed tree just after a.U. compression is
2i+l,1

finished during the execution of EVAL_AND_SEQUENCE(e1) . The operation

of EVAL_AND,,SEQUENCE(e1) adds a triple (P 1 , h(p21~1 ~~ v~~1) such

that P2~~1, ~
€ s(P 1) to sequence • Thus we obtain a satisfactory

partition of
~2i+l

The partitioning of
~2k+i

i~ the same as the partitioning of

p . for 1 <1 < k-i except that the path p . 1 must be further
2i+l — — 21 ,I

partitioned into paths represented by triples (S(v),ancestor(v),v)

added to sequence during the final part of REDUCE_AND SEQTJENCE.

The details are straightforward.

We obtain by the method above a partition of an arbitrary path p

which satisfies (6c) if we ignore empty paths in the partition.

Showing that the partLtion is unique is tedious but not difficult.

The crucial point is that for any pair u > v , only one triple of

3].

, -_~~~~~—- - - -

~~~~~~~~~~ -~
-
~
;-

~~

- - 

~4~
____ T•~a~ _ _ _ _ _ _ _ _  _ _ _ _  ~ ‘T~~ ~i: - - ~~~~~~~~~~~~~~~~~



the form (P,u,v) appears in sequence • We leave the details to the

reader. 0

REDUCE_MD SEQUENCE requires O(m log n) time to construct a path

sequence if path compression is used to implement the forest operations

and O(m cr(m,n ) )  if stratified. path compression is used. The length of

the path sequence constructed is proportional to the running time. It

is interesting to note that the version of the algorithm which carries

out no compress ion generates essentially the same path sequence as

ELIMINATE.

- 32

-
~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L-- -~~ -~~~~~~~~~~ -~~Wd~~- . 

-



6. Decomposition Using Dominators.

In this section we generalize the algorithm of Section 5 so that

it becomes a decomposition method applicable to all graphs. The

reducible graphs play a role in this method analogous to the role of

acyc].ic graphs in decomposition by strong components. Just as a graph

is acydic if and only if all its strong components are single vertices,

a graph is reducible if and. only if all its components in the new

decomposition are single vertices.

The concept we use is that of a single-entry region, which we make

precise as follows. For an arbitrary flow graph G = (V,E,r) , we say

a vertex v dominates another vertex w if v w and v lies on

every path from r to w

Lemma 6 [1] .  There is a tree T , called the dominator tree of G ,

such that v is a proper ancestor of w in T if and only if v

dominates w . Vertex r is the root of T and 0 contains every

vertex in G

For any vertex v r , we denote by idom(v) the parent of v

in T . Vertex idom(v) is called the immediate dominator of v and

is the unique vertex which dan.i.nates v and is dominated by every other

dominator of v . The dominator tree defines the single-entry regions

of G ; the following lemma is a technical statement of this fact.

(Note the similarity between this lemma and. Lemma 3 . )

Lenmia 7. For any edge e , idom(t(e)) is an ancestor of bCe) in T

Proof. Every path fran r to t (e )  cont ains idom(t (e ))  . By adding

edge e to any path from’ r to h(e) , we get a path from r to t(e)

1’
-. 

~~~~~~~~~ 

Thus any path from r to h(e) contains idom (t(e)) , and by Lemma 6

idom(t(e)) ~~h(e) in T . 0

For any edge e , let ~ be an edge such that t (~~) = t (e) and

h(e) = h(e) if h (e) = idom(t(e)) , h(e) = u where

idom(t(e)) -. u ~ h(e) in T if t (e) ~ idom(h(e)) . Let

~~~= (V,~ ,r) , where E =  t e l e € E J  . We ca.U G the derived graph

of G . Figures 1 - 3 illustrate a graph, its dominator tree, and its

derived graph. Note that there are three kinds of edges in the derived

graph . If t ( e )  = id.om(h(e)) , then ~ = e is an edge in T . If

t (e )  ~ h(e)  in T then e is a loop. Otherwise e leads from one

sibling to another in T .
- [Figure 1]

[Figure 2]

[Figure 3]

We call the strong components of G the dominator strong components

of G . It is not hard to prove that a graph is reducible if and only if

all its dominator strong components are single vertices. The idea of

our algorithm is to use Gaussian elimination (or some other method) to

compute a path sequence for each dominator strong component of ~ , and

to combine these path sequences to form a path sequence for G by using

a combination of the methods in Sections 3 and. 5. The algorithm

manipulates the dominator tree in the same way that REDUCE AND_SEQUENCE

manipulates the tree defined by the header pointers. Henceforth when

we refer to descendants and ancestors we mean with respect to the

dominator tree T

314

- -p _--:- - -

~~~~~~~~~~~ 

~~~~~~~~~~ 
_ _ _ _  - 

~~~~~~-


The algorithm assumes that the dominator tree of G is known arid

that the vertices are numbered from 1 to n so that idom(v) > v

for each vertex v r • The algorithm requires the following information:

for each vertex u the set children (u) of vertices v such that

idom(v) = u , the set tree(u) of edges e such that t(e) = u and

h(e) = idan(u) , and. the set nontree(u) of edges e such that

t(e) = u and h(e) ~ idan(u) ; for each edge e the corresponding

edge e in G . Thi s information and the vertex numbering can be

computed in O(m a(m,n)) time using the daninators algorithm of

Lengauer and Tarjan [21].

The algorithm groups together vertices with a common parent and.

processes these sibling sets in increasing order by parent. The algorithm

processes the set of siblings chlldren(u) for each vertex U as

follows. For each edge e such that h(e) is a child of u , the

algorithm uses EVAL AI~1D SEQUENCE to compute a path expression p(e)

representing all paths in G fran h(e) to t(~) which end with

edge e and contain only proper descendants of h(e) as intermediate

vertices. Then the algorithm computes a path sequence X,~ for the

subgraph
~

of G induced by children(u) . Substituting P(~) for

for each edge e appearing in this path sequence produces a sequence

that represents every path in G starting and ending at a child

of u and contairing only proper descendants of u as intermediate

vertices.

The algorithm concatenates Y~ onto the end of the path sequence.

By applying SOLVE to
~u ’

the algorithm computes for each child v

of U a path expression R(v) which represents all paths in G from

35

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
‘
_ - _

~
_ _ __

T ~~~~~~~~~~~~



u to v containing only proper descendants of u as intermediate

vertices. The algorithm completes the processing of the sibling set

by executing UPDATE(v,R(v)) ; LINK(u,v) for each child v of U

The algorithm finishes by computing a path expression Q representing

all paths from r to r and adding additional triples to the path

sequence just REDUCE MID SEQUENCE does. The algorithm appears in more

detail below.

DECOMPOSE AND SEQUENCE;

begin

initialize: for each v€V do INITIALIZE(v) 
~~~

sequence = the empty sequence;

for u : = 1 until n do

derive: for each v € children(u) do

for each e € nontree(v) do

P(e) := EVAL MID SEQtTEN CE(e) od od;

eliminate: compute a path sequence X~ for

substitute: form Y from X~ by replacing each occurrence of an

edge e in a path expression by P(e);

sequence := sequence concatenated with Y
U

solve: for each v€children (u) do R(v) :=

for each e € tree(v) do R(v) := [R(v) U e] od od;___# ,w___. — — -‘ ~~ s

for each (P,w,x) € y in order do
_w ~~W~- U ..w

if w = x -, ~ (w) := [R(w).P]

0 w~~ x -. R(x) := [R(x)u [R(w).P]] £.L~~~~
;

update: for each v€children (u) do
—

UPDATE(v,R(v)); LINK(u,v) odod;

36

pI#t- —~~~P~~~ v,”,-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - - -

finalize: Q :=

for each e€ n o n t r e e (r) do Q := [QU EVAL AND SEQpEN CE(e)] od;_w — - -

if [Q*] ~ j~ add ({Q
*
lhr,r) to sequence fi;

f o r v := n-l by -l until l do add (S(v) , ancestor(v) , v)

to sequence od

end DECOMPOSE AND SEQUENCE;

This method combines the techniques of Section 3 with the method

of Section 5. The parts of the program labelled initialize , derive ,

update , and finalize are adapted from REDUCE AND SEQUENCE and serve

to combine the path sequences computed for the dominator strong components

(in eliminate and substitute) into a path sequence for the entire

graph. The two ioops labelled solve comprise a version of SOLVE.

We can implement step eliminate using ELIMINATE on the strong

components of G
~

and combining the results as described in Theorem 6.

Step substitute can be performed either after or during the computation

of X the latter is preferable.
U

The next lemma expresses the properties of the values computed by

DECOMPOSE AND ELIMINATE; its proof combines the ideas in Theorem 1 and

Corollary 1.

Lemma 8. (i) For each edge e in G such that e€nontree (t (e)) ,

P(e) as computed by DECOMPOSE AND SEQUENCE is a non-redundant path

expression representing exactly the paths in G from h(e) to t(~)

which end with edge e and contain only proper descendants of h(~)

as intermediate vertices.

(i i) For each vertex v in G , R(v) as computed by DECOMPOSE AND SEQUENCE

is a non-redundant path expression representing exactly the paths in G

37

~~~ 
~~~~
l
~~~~~~

_

~

_ 

~~ ~~
._
~~~

~

_
I~

~~~~~~~~~~~~~~~~~~~~ I



from idom(v) to v which contain only proper descendants of idom(v)

as intermediate vertices.

(iii) For each vertex u in G , y as computed by DECOMPOSE AND SEQUENCE

is a sequence 
~~~~~~ 

(P1,v1,w1),(p
2
,v2,w2),...,(P1

,v
1
,w1)

satisfying

(6a), (6b), and

(9) For any non-empty path p in G which starts and ends at a child

of u and contains only proper descendants of u as intermediate vertices,

there is a unique sequence of indices 1 < i1 < i2 < ~ • • < i~ < I and

a unique partition of p into non--empty paths p =
~l’~ 2’ ’ ~ k

such

that p
~

€
~~~~~~~~~~ 

) for 1 < i < k

Proof. Straightforward by induction on the number of times the ioop

in DECOMPOSE AND SEQUENCE is executed. 0

Theorem 9. Procedure DECOMPOSE AND SEQUENCE correctly computes a path

sequence for G

Proof. Analogous to the proof of Theorem 8. 0

DECOMPOSE AND ELIMINATE thus provides a way to compute path sequences

in arbitrary graphs. The running time of the method is O(m a(m,n)+t)

if stratif ied path compression is used to implement the forest operat ions

and O((m log n)+t) if path compression is used, where t is the time

to find path sequences for the dominator strong components of G . The

length of the path sequence produced is either O(m a(m,n)) + I or

O(m log n) + £ , where £ is the total length of the path sequences for

the dominator strong components.

38

‘.“ ‘
~~~
“I”
. ~~~~~~

_______ - - - -

7. Remarks.

In this paper we have described fast algorithms for solving path

expression problems on reducible or almost-reducible graphs. The fastest

method requires O(m c~(m,n) + t) time to compute a path sequence for an

arbitrary directed. graph, where t is the amount of time required to

compute path sequences for the dominator strong components. A slower

but much simpler method requires O(m log n + t) time and promises to

be easy to program and efficient in practice.

By using our algorithms in combination with the mapping technique

described by Tarjan [30), we can solve many kinds of path problems,

Including finding shortest paths, carrying out forward and backward

global flow analysis, and solving sparse systems of linear equations.

There are two rather different ways of doing this. The first is to

use the solution to a path expression problem as a general-purpose

straight-line program which solves any particular path problem by

properly interpreting U , • , and * • The second is to use an algorithm

for solving a path expression problem to solve a particular path problem

by reinterpreting U , • , and * within the algorithm; this avoids the

intermediate step of first constructing a directed acyclic graph

representing a set of path expressions. The choice between these two

methods depends upon the time and space available and whether we want

to solve one or many path problems on the same graph.

For path problems in which the operat ion corr esponding to + is

idempotent, the non-redundancy and uniqueness conditions in (6) and

Theorem 1 are not necessary and can be dropped [30]. In such cases we

can use the sophisticated algorithm of Tarjan [29] to carry out the

39

________________ —— - — S ___~ -

~~~~

,- 

~~~~~~~~~~~~~~~~~~~ Tw~~~~~~
1 ----.-__

forest manipulation operations and achieve an O(m a(m,n) + t) time

bound [27]. It does not seem possible to adapt this method to satisfy

non-redundancy, however. The only interesting path problem known to

the author which does not have the idempotent property is the solution

of sparse systems of linear equations. For this problem another form

of tree manipulation described by Tarj an [29] gives a rather simple

0(m a(m,n)+t) -time algorithm [28).

The method of decomposition by dominators is a kind of single-element

“tearing ” [5] in which the clever use of data structures allows us to

make the combining step very efficient. The result may be generalizable

in various directions. For instance, on problem graphs for which there

is no natural start vertex we would like to know how to pick a start

vertex which gives the finest decomposition. It may also be possible

to extend the technique to regions with two or more entry vertices. We

leave these questions to the ambitious reader.

140

-

A~pendixz Graph Theoretic Terminology.

A directed graph G = (v, E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e) € V and

a ~~~~ t(e) c v • We regard the edge e as leading frau h(e) to t(e) ,

and we say the edge e leaves h(e) and enters t(e) . We usually

denote the number of vertices by n and the number of edges by m

A is an edge e with h(e) = t (e) . A ~~~~ p = e
l,
e
2,...,

ek is

a sequence of edges such that t (e .) = h(e1~1) for 1 < i < k-i • The

path is fran h (p) = h(e1) to t(p) = t (ek) . The path contains edges

el,e2,...,
e
k and vertices h(el), h(e 2) ,. . . ,h (ek), t (ek) and avoids all

other edges and vertices. There is a path of no edges from any vertex

to itself. A cycle is a non-empty path from a vertex to itself. A graph

is acyclic if it contains no cycles.

The reverse Gr of a graph G is the graph formed by replacing

each edge e with an edge e~ such that h(er) = t (e) and t(er) = h(e)

If G1 = (V1,E1)
and G

2 = (V2,E2) are graphs, G1 is a subgraph of

G2
if V1 c V2 and E

1 c E
2
. G1 is the subgraph of G

2
induced by

V1 if V1 c V2 and E1 = [e £ E2 h(e),t(e) €

A vertex v is reachable from a vertex w in a graph G if there

is a path fran v to w • G is strongly connected if every vertex is

reachable from every other vertex. The strong components of G are its

maximal strongly connected subgraphs. These components are uniquely

defined and partition the vertices of G

A flow graph G = (V, E,r) is a graph with a distinguished start

vertex r such that every vertex is reachable from r • A (directed,

rooted) tree T = (V,E,r) is a flow graph with
~EI = LV~

-l . The start

1~
i

141

____________ - - - _____•______ _
~~~~~~~~~~ 9•

_ _ _ _ _ _ _ _ _ _

~i ~~~~~ 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ITr-1.

~
sp

~
.i_*JwTL~ - — - ~ —~ — - - - -

F’

vertex r is the root of the tree. Any tree is acyclic, and if v

is any vertex in T , there is a unique path from r to v . If v

and w are vertices in a tree T and there is a path from v to w ,

v is an ancestor of w and w is a descendant of v . We denote
*this relationship by v — w . If in addition v w , v is a proper

ancestor of w and w is a proper descendant of v , denoted by v ~. w

If there is an edge from v to w , v is the parent of w and w is

a child of v , denoted by v -. w . Two vertices with a common parent

are siblings. In a tree each vertex has a unique parent (except the

root, which has no parent).

142

_ _ _ _

F’
References

[1] A. V. Aho and J. D. UlJmaa, The Theory of Parsing, Translation, and
Compiling, Volume II: Compiling, Prentice-Hall, Englewood. Cliffs,
N .J. (1972), 915.

[2] A. V. Aho and 3. D. WJ.man, Principles of Compiler Design,

Addison-Wesley, Reading, Mass., 1977, 1408-517.
[3] F. E. Allen, “Control flow analysis, ” SIGPLAN Notices 5, 7 (1970),

1-19.
[14] R• C. Backhouse and B. A. Carré, “Regular algebra applied to

path-finding problems,” J. Inst. Maths. Applies. 15 (1975), 161-186 .

[5] j . R. Bunch and D. J. Rose, “Partitioning, tearing, and modification
of sparse linear systems,” J. Math. Analysis and Applies. 148 (1974),
5714-593

[6) 3. A. Carr~, “An algebra for network routing problems,” J. Inst.

Math. Applies. 7 (1971), 273-2914.

[7] E. W. Dijkstra, - A Discipline of Programming, Prentice-Hall,
Englewood Cliffs, N.J., 1976.

[8] I. S. Duff, “A survey of sparse matrix research,” Proc. IEEE 65 (1977),
500-535 .

[9] R. Farrow, “Efficient variants of path compression on unbalanced

trees,” unpublished manuscript, 1978.
[10) R. Floyd, “Algorithm 97: shortest path,” Comm. ACM 5 (1962), 3145.
[11] G. E. Fors~rthe and C. B. Moler, Computer Solution of Linear Algebraic

Equations, Prentice-Hail, Englewood Cliffs, N. J. , 1967.
[12) S. L. Graham and M. Weginan, “A fast and. usually linear algorithm for

global flow analysis,” Journal ACM 23 (1976), 172-202.

[13] M. S. Hecht, Flow Analysis of Computer Programs, Elsevier, New York,

1977.

[114] M. S. Hecht and 3. I). U]J.man, “Flow graph reducibility,” SIAM J.
Comput. 1 (1972), 188-202.

(15] M. S. Hecht and J. D. Uliman, “Characterizations of reducible flow
graphs,” Journal ACM 21 (19714), 367-375 .

[161 D. B. Johnson, “Efficient algorithms for shortest paths in sparse
networks,” Journal ACM 214 (1977), 1-13

143

T~iI~~~~~~~~’~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

[17] K. W. Kennedy, “Node listings applied to data flow analysis,”

Conf. Record of the Second ACM Symp. on Principles of Prog. Lang.

(1975), 10-21.
[18] 3. C. KLeene, “Representation of events in nerve nets and finite

automat a, ” Automata Studies, C. Shannon and J. McCarthy, eds.,
Princeton University Press , Princeton, N.J., 1956, 3-140.

[19] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1968, 258-265.

[20] D. E. Knuth, “An empirical study of FORTRAN programs,” Software
Practice and Experience 1 (1971), 105-133 .

[21] T. Lengauer and R. E. Tar j ari, “A fast algorithm for finding
dominators in flow graphs, ” Trans. on Prog. Lang. and Systems 1

(1979), to appear .

[22] D. J. Rose , A. H. Sherman, R. E. Tarj an, and G. F. Whitten,
“Algorithms and software for in-core factorization of sparse
symmetric positive definite matrices,” Computers and Structures 10
(1979), 411-418.

[23] M. Schaefer, A Mathematical Theory of Global Program Optimization,

Prentice-Hall, Englewood. Cliffs, N.J., 1973 .
[214] R . E. Tarjan, “Depth-first search and linear graph algorithms,”

SIAN J. Comput. 1 (1972), 146-160.

[25] R. Tarjan, “Finding dominators in directed graphs,” SIAM 3. Comput. 3
(19714), 62-89.

[26] R. E. Tarjan, “Testing flow graph reducibility,” J. Comp. and Sys.

Sciences 9 (19714), 355-365.
[27] R. E. Tarj an, “Solving path problems on directed graphs,” Technical Report

STAN-CS-75-528, Computer Science Department, Stanford University, 1975 .
[28] R. E. Tar j an, “Gr aph theory and Gaussian elimination,” Sparse Matrix

Computations, J. H. Bunch and D. J. Rose, eds., Academic Press,
New York, 1976, 3-22.

[29] R . E. Tarjan, “Applications of path compression on balanced trees, ”
Journal ACM, to appear.

[30] R. E. Tarj an, “A unified approach to path problems, ” Technical Report

ST.AN-CS-79-729, Computer Science Department, Stanford University, 1979;
also Journal ACM, submitted.

[31] J. D. Uliman, “Fast algorithms for the elimination of common subexpressions,”
Acta Inforinatica 2 (1973), 191-213.

1414

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~
-
~~-w~~i-~~—— —~~~.-

--- - .~~~~~~ —

—

(start)

~~~~~ ~~~~~~2 
e
3~~~~~ _

7 L5/~~I (i~~ / \5 e
13/

8
e
22(

~~~~~~~~~ //
t

~~~~~~~~~~~~~ 

~
<

f

/

r

~ )
71 10/ /el2 

e19\ / ~/
_

)

~~~
/

re
l7

N
~~~~ 7~~ 

e20

Figure 1. A flow graph G

_ _ 
-

_____ 

- -~~~~~~ - ~~~~~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-—- _____



13

2 6 U 12

3 5 10

14 9

Figure 2. The dominator tree of G .

146

- --~~~~- ——------ - -
~~~~.~~~~ . -— ;- - - -- - - — —.—-,— - .

.

~:~~~~
‘-• --

~~~~~~~~~~~~~~~~T~~ -

p
~- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~T~I - 

-

e ~~~~~~~~~~~22 13
e2

e
3

e1

I

~1O e4
2 6 e18 ~ 8 U 12

e
l e17

—

e6 e8
e114

10

e16
e
7

14 9

Figure 3. The derived. graph of G . The vertex sets of the

dominator strong components are tl,2) ‘ [3) ~

(5) , (6) , [7, 8} , [9) , [10) , [11,12) , [13)

147

- - -
~- .--,- — —~---- -

-
= ~= _ I -:-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _


